

NELSON ANALYTICAL LAB

ISO 17025:2017 Accreditation ANAB Certificate Number: AT-2169 Maine CDC Accreditation MTF001 Office of Marijuana Policy MTF328

Report Date:

22 June 2021

High Purity Natural Products:

120 York Street Kennebunk, ME 04043

(207) 467-3478

114 Pleasant Street Southbridge MA , 01550:

Enclosed are the results of analytical testing performed on the following samples:

Laboratory ID	Sample Location	Date sampled	Date received
C21060430.01	Zenergy	17-Jun-21 00:00	21-Jun-21 09:45
C21060430.02	Syrenity	17-Jun-21 00:00	21-Jun-21 09:45

If you have any questions concerning this report, please feel free to contact the laboratory at 207-467-3478.

Loui Maling

Lorri Maling Laboratory Director

The results in this report relate only to the submitted samples. This analytical report may only be reproduced in its entirety

120 York Street Kennebunk, ME 04046 (207) 467-3478

NELSON ANALYTICAL LAB

RP210622048

ISO 17025:2017 Certification ANAB Certificate Number AT-2169 Maine CDC Accreditation # MTF001 Office of Marijuana Policy MTF328

Amount I	Received:
----------	-----------

REPORT OF ANALYSIS

High Purity Natural Products

C21060430.01

Date sampled : 06/17/2021 **Reported Date:** 06/22/2021 Temp Received:

Cannabinoids by HPLC

<u>Analyte</u>	<u>Result</u>	<u>Reporting</u> <u>Limit</u>	<u>Units</u>	Q	<u>Analyzed</u>	Method	<u>Analyst</u>	<u>Pass/Fail</u> <u>Limit</u>	<u>Test</u> <u>Remarks</u>
Cannabidivarin (CBDV)	ND	0.5	mg/mL		06/21/2021 22:24	HPLC SOP-7	NRS	N/A	
Cannabidiolic acid (CBDA)	ND	0.5	mg/mL		06/21/2021 22:24	HPLC SOP-7	NRS	N/A	
Cannabigerolic acid (CBGA)	ND	0.5	mg/mL		06/21/2021 22:24	HPLC SOP-7	NRS	N/A	
Cannabigerol (CBG)	ND	0.5	mg/mL		06/21/2021 22:24	HPLC SOP-7	NRS	N/A	
Cannabidiol (CBD)	15.5	0.5	mg/mL		06/21/2021 22:24	HPLC SOP-7	NRS	N/A	
Tetrahydrocannabivarin (THCV)	ND	0.5	mg/mL		06/21/2021 22:24	HPLC SOP-7	NRS	N/A	
Cannabinol (CBN)	ND	0.5	mg/mL		06/21/2021 22:24	HPLC SOP-7	NRS	N/A	
Delta-9-THC	ND	0.5	mg/mL		06/21/2021 22:24	HPLC SOP-7	NRS	N/A	
Delta-8-THC	ND	0.5	mg/mL		06/21/2021 22:24	HPLC SOP-7	NRS	N/A	
Cannabichromene (CBC)	ND	0.5	mg/mL		06/21/2021 22:24	HPLC SOP-7	NRS	N/A	
THCA-A	ND	0.5	mg/mL		06/21/2021 22:24	HPLC SOP-7	NRS	N/A	

Total Cannabinoids by HPLC (Calculated)

<u>Analyte</u>	<u>Result</u>	<u>Reporting</u> <u>Limit</u>	<u>Units</u>	Q	<u>Analyzed</u>	Method	<u>Analyst</u>	<u>Pass/Fail</u> <u>Limit</u>	<u>Test</u> <u>Remarks</u>
CBD+CBDA- Calculated	15.5	0.5	mg/mL		06/21/2021 22:24	HPLC SOP-7	NRS	N/A	
Total CBD-(Max CBD) Calculated	15.5	0.5	mg/mL		06/21/2021 22:24	HPLC SOP-7	NRS	N/A	
THC+THCA- Calculated	ND	0.5	mg/mL		06/21/2021 22:24	HPLC SOP-7	NRS	N/A	
Total THC-(Max THC) Calculated	ND	0.5	mg/mL		06/21/2021 22:24	HPLC SOP-7	NRS	N/A	
Total Cannabinoids- Calculated	15.5	0.5	mg/mL		06/21/2021 22:24	HPLC SOP-7	NRS	N/A	

Results as reported above relate only to samples as submitted, unless specifically noted otherwise.

120 York Street Kennebunk, ME 04046 (207) 467-3478

NELSON ANALYTICAL LAB

RP210622048

06/17/2021

06/22/2021

ISO 17025:2017 Certification ANAB Certificate Number AT-2169 Maine CDC Accreditation # MTF001 Office of Marijuana Policy MTF328

Date sampled :

Reported Date:

Temp Received:

Amount Received:

High Purity Natural Products

C21060430.02

Syrenity(Tincture)

Cannabinoids by HPLC

<u>Analyte</u>	<u>Result</u>	<u>Reporting</u> <u>Limit</u>	<u>Units</u>	Q	<u>Analyzed</u>	Method	<u>Analyst</u>	<u>Pass/Fail</u> <u>Limit</u>	<u>Test</u> <u>Remarks</u>
Cannabidivarin (CBDV)	ND	0.5	mg/mL		06/21/2021 23:16	HPLC SOP-7	NRS	N/A	
Cannabidiolic acid (CBDA)	ND	0.5	mg/mL		06/21/2021 23:16	HPLC SOP-7	NRS	N/A	
Cannabigerolic acid (CBGA)	ND	0.5	mg/mL		06/21/2021 23:16	HPLC SOP-7	NRS	N/A	
Cannabigerol (CBG)	ND	0.5	mg/mL		06/21/2021 23:16	HPLC SOP-7	NRS	N/A	
Cannabidiol (CBD)	15.8	0.5	mg/mL		06/21/2021 23:16	HPLC SOP-7	NRS	N/A	
Tetrahydrocannabivarin (THCV)	ND	0.5	mg/mL		06/21/2021 23:16	HPLC SOP-7	NRS	N/A	
Cannabinol (CBN)	ND	0.5	mg/mL		06/21/2021 23:16	HPLC SOP-7	NRS	N/A	
Delta-9-THC	ND	0.5	mg/mL		06/21/2021 23:16	HPLC SOP-7	NRS	N/A	
Delta-8-THC	ND	0.5	mg/mL		06/21/2021 23:16	HPLC SOP-7	NRS	N/A	
Cannabichromene (CBC)	ND	0.5	mg/mL		06/21/2021 23:16	HPLC SOP-7	NRS	N/A	
THCA-A	ND	0.5	mg/mL		06/21/2021 23:16	HPLC SOP-7	NRS	N/A	

Total Cannabinoids by HPLC (Calculated)

Analyte	<u>Result</u>	<u>Reporting</u> <u>Limit</u>	<u>Units</u>	Q	<u>Analyzed</u>	Method	<u>Analyst</u>	<u>Pass/Fail</u> <u>Limit</u>	<u>Test</u> <u>Remarks</u>
CBD+CBDA- Calculated	15.8	0.5	mg/mL		06/21/2021 23:16	HPLC SOP-7	NRS	N/A	
Total CBD-(Max CBD) Calculated	15.8	0.5	mg/mL		06/21/2021 23:16	HPLC SOP-7	NRS	N/A	
THC+THCA- Calculated	ND	0.5	mg/mL		06/21/2021 23:16	HPLC SOP-7	NRS	N/A	
Total THC-(Max THC) Calculated	ND	0.5	mg/mL		06/21/2021 23:16	HPLC SOP-7	NRS	N/A	
Total Cannabinoids- Calculated	15.8	0.5	mg/mL		06/21/2021 23:16	HPLC SOP-7	NRS	N/A	

Results as reported above relate only to samples as submitted, unless specifically noted otherwise.

120 York Street

Kennebunk, ME 04043 (207)467-3478 or (207)618-9333

NELSON ANALYTICAL LAB

ANAB Certificate Number: AT-2169

RP210622048

www.Testedlabs.com

Notes and Definitions

Note: All sample results are based on samples as they are received. Not all potential/existing hazards were tested. Unless otherwise noted below, analyses were performed without significant modifications and QC met the quality standards outlined in the methods reported. For purposes of reporting the terms marijuana and cannabis are used interchangeably. The Pass/Fail column on the report references Maine Adult Use acceptance limits. The State of Maine does not require Medical Marijuana or Hemp to meet these acceptance limits currently.

Results for the Maine Adult Use program are entered into the Metrc system. Due to reporting requirements some results are entered in Metrc as Zero. This is not scientifically accurate. Please refer to the final pdf report for the accurate reporting information. The Total THC number listed on the report may not be the same number listed in the Metrc system. Delta 8, if found in the sample, is not reported in Metrc or as part on the Total THC in Metrc.

Heat activation of cannabis products converts THCA to THC and CBDA to CBD in a time and temperature dependent manner. This conversion is known as decarboxylation and results from the loss of CO2 during heating.

Total THC (Max THC) = Delta 8 THC + Delta 9 THC + (THCA x 0.877) Total CBD (Max CBD) = CBD + (CBDA x 0.880)

Nelson Analytical is accredited for testing by ISO/IEC 17025:2017 and certified by ME CDC for the following parameters only:

Cannabinoids: Cannabinol (CBN), Cannabidol (CBD)*, Cannabidiolic Acid (CBDA)*, Cannabigerol (CBG), Cannabigerolic Acid (CBGA), Cannabichromene (CBC), delta-9-THC*, delta-8-THC, THCA-A*, Tetrahydrocannabivarin (THCV), Cannabidivarin (CBDV) by High Pressure Liquid Chromatography (HPLC). Internal SOP-1/SOP-7 Analysis of Cannabinoids *NOTE: ME CDC certification for CBD, CBDA, Delta 9 THC and THCA-A, Total THC and Total CBD.

Homogeneity (Internal SOP-1/SOP-7 Analysis of Cannabinoids)

Visual Inspection - Foreign Material Testing (Internal SOP-24-Visual Inspection)

% Moisture (Loss on drying) (Internal SOP 59 - % Moisture)

Metals Preparation and Analysis: Arsenic, Cadmium, Lead and Mercury (SOP-17- ICP MS based on EPA 200.8)

Mycotoxins: Total Aflatoxin and Ochratoxin by ELISA - Internal SOP-4 Total Aflatoxin and Ochratoxin

Yeast and Mold (based on AOAC Method 997.02/2014.05), Total Coliform and E. coli (based on AOAC Method 991.14) E. Coli P/A (based on AOAC 991.14 Modified with enrichment before plating), Aerobic Plate Count (based on AOAC Method 990.12), Enterobacteriaceae (based on OMA 2003.01), Salmonella (based on AOAC 2014.01) SOP-3-Microbiologial analysis by Petri Film.

Water Activity (SOP-53-Water Activity-based on ASTM D81918)

< or ND - Analyte result not detected above the method reporting limit

All sample results are reported on an "as received" basis.

Edibles are reported in mg/serving. The serving size is defined by the customer for Adult Use testing.

If the serving size is not defined by the customer (for R&D or Medical testing), the number reported is based on the weight of one unit of the product or as defined on the customer label.

The mg/serving reported are based on weights of the serving size taken at the laboratory. The mg/package results reported are based on information supplied by the customer.

Edible conversion calculation: mg/g in serving x weight of serving = mg per serving

Mg/package conversion: mg/serving x servings per package = mg/package

Laboratory uncertainty is calculated and updated on a regular basis.

The uncertainty calculated for edibles is applied to the Total THC results for Maine Adult use marijuana products. The uncertainty value currently in use is 10 mg per serving +/- 0.5 mg/serving based on uncertainty data calculated through August 2020.

The uncertainty calculated for Total THC in hemp is 0.30% +/- 0.05%. The uncertainty is based on data calculated through August 2020.

Samples are extracted and analyzed on the same day unless otherwise noted.

Cannabinoid and Terpene Analysis are based on laboratory developed methods. All other test methods are based on established EPA, USP or FDA methods.

Matrix matched quality control check samples for marijuana are available for microbiological analysis in a hemp-based QC. Other matrix matched quality control samples for most matrices may be available for hemp but do not currently exist in marijuana. Due to this unavailability, even ISO/IEC validated methods cannot be fully verified for the efficiency and accuracy of the marijuana extraction and analysis in any current Maine Testing facility.

To convert mg/ml to a % percentage move the decimal place one to the left.

Results as reported above relate only to samples as submitted, unless specifically noted otherwise.

NELSON ANALYTICAL LAB - TEST DESCRIPTIONS RP210622048

Total Coliform & E.coli Bacteria (Limit = "ABSENT" per 100ml)

The organisms in the total coliform group are called indicator organisms. That is, if present, they indicate that there is a **possibility, but not a certainty**, that disease organisms may **also** be present in the water. When absent there is a very low probability of disease organisms being present in the water. The ability of the total coliform test to reliably predict the bacterial safety of water relative to the hundreds of possible diseases that might be present is critical since it is impossible, in a practical sense, to check separately for every disease organism directly on a monthly or quarterly basis. The presence of <u>only</u> **Total Coliform** generally does not imply an imminent health risk but does require an analysis of all water systems facilities and their operation to determine how these organisms entered the water system. **Escherichia Coli (E.coli).** This is a specific species (subgroup) within the coliform family. They originate only in the intestines of animals and humans. They have a relatively short life span compared to more general Total Coliform. Their presence indicates a strong likelihood that human or animal wastes are entering the water system, and have a much higher likelihood of causing illness.

Iron & Manganese (Limits = 0.3 & 0.05 mg/l respectively)

These occur naturally in New England's geology. They dissolve into groundwater as acidic rainfall percolates through the soil and rock. In higher concentrations, they can cause the following problems:

- 1. Staining on laundry and water fixtures.
- 2. Taste a metallic or vinyl type taste in the water.
- 3. Appearance occasionally will give an oily appearing, "crusty" sheen to the water's surface.
- 4. Clogging. supports the growth of Iron bacteria. This non-health related bacteria can clog strainers, pumps, and valves.

EPA, at present, has not set health standards for either iron or manganese in drinking water. They are both considered aesthetic concerns only.

<u>Hardness</u>

The presence or absence of conventional hardness in drinking water is not known to pose a health risk to users. Hardness is normally considered an aesthetic water quality factor. The presence of some dissolved mineral material in drinking water is typically what gives the water its characteristic and pleasant "taste". At higher concentrations however, hardness creates the following consumer problems:

- 1. Produces white mineral deposits on tubs, showers, and dishes
- Reduces the efficiency of devices that heat water. As hardness deposits build in thickness, they act like insulation, reducing heat transfer.
- 3. Can reduce the ability of soaps to create suds, thus reducing the efficiency of cleaning ability. Can cause problems with laundry.

Nitrate & Nitrite Nitrogen (Limits = 10.0 & 1.0 mg/l respectively)

Nitrate is a component in fertilizer, and both nitrate/nitrite are found in sewage and sanitary wastes from humans and animals. Nitrate/nitrite concentrations are not normally high in New England's wells or surface waters. When elevated, the surrounding area is often heavily developed, used for agricultural purposes, or subject to heavy fertilization. Excessive levels of these nitrogen compounds in drinking water have caused serious illness and sometimes death in infants under six months of age. Symptoms include shortness of breath and blueness of the skin (methemoglobinemia).

Sodium & Chloride (Chloride = 250 mg/l)

The compound known as "salt" consists of the elements sodium and chloride. Substantially higher levels of Sodium and Chloride tend to imply contamination by activities of man including road salt storage, use of road salts, and discharges from water softeners. Typical background levels of Sodium and Chloride for pristine locations in New England's are generally less than 15 mg/L and 30 mg/L respectively.

<u>pH</u> (Acceptable Range = 6.5 - 8.5)

The pH of water is a measure of its acidity or alkalinity. A low pH indicates acidic water, which is therefore likely to be corrosive to household plumbing such as copper pipes. In older homes (prior to mid to late 1980's) the plumbing may also contain Lead in the soldered joints. Corrosive water will dissolve these metals from the plumbing into the water. Dissolved Copper & Lead in drinking water can be a health concern, and can also be a maintenance concern as the water corrodes the plumbing in the home eventually causing water leaks.

Lead & Copper (Limits = 0.015 & 1.3 mg/l respectively)

Found in water with corrosive tendencies (see pH). There is an extremely low occurrence of naturally occurring lead & copper in water. It is nearly always from plumbing systems with copper lines and/or lead solder. Levels are highest after water has been stagnant in the pipes. The recommended method for testing of Lead & Copper when plumbing is a concern is to sample water after it has been sitting in the pipes for 6 - 10 hours, without running the water at all prior to filling the bottle. This is called a "first draw" and simulates a worst case test.

Radioactivity (Limit = 15 pCi/L for Gross Alpha)

New England's bedrock contains naturally occurring radioactivity. A few examples **include Radon, Radium 226, Radium 228 and Uranium**. Radon is a gas (see separate description); the others are minerals. The basic test to determine the total radioactivity from all these sources is **Gross Alpha**.

<u>Alkalinity:</u> A measure of water's acid neutralizing capacity. A low alkalinity in combination with low hardness may increase corrosive tendencies, especially in water that already has a pH below or at the low end of the acceptable range.

<u> Arsenic (Limit = 0.010 mg/l)</u>

Arsenic occurs naturally in New England. In fact, arsenic was mined commercially in New England during the 1800s. Arsenic also occurs as a result of human activities. Activities that could have left arsenic residuals include apple orchard spraying and coal ash disposal. Generally it is not possible to predict if a well will have elevated arsenic. Arsenic has no smell, taste or coloration when dissolved in water, even at high concentrations. Only water quality testing can determine its presence and concentration in well water. Arsenic has been classified by the U.S. Environmental Protection Agency (EPA) as a human carcinogen (cancer causing agent.) Long term exposure to arsenic has been linked to cancer, cardiovascular disease, immunological disorders, diabetes and other medical issues. On February 22, 2002 a new EPA rule for arsenic in drinking water became effective. This new Limit is 0.010 mg/l, the old limit was 0.050 mg/l. This new rule is final, and became fully enforced on all public water systems in January of 2006. New England's DES recommends that at least two tests be processed before concluding the well's arsenic concentration, as well water quality can change due to many factors.

Radon (No regulated limit)

IMPORTANT NOTE: Radon levels may test significantly different when collected from a well that is not in a normal pattern of use, compared to Radon levels from the same well when in normal daily use.

Radon gas is normally found in all well water. Bedrock wells typically have much higher levels then dug or point wells. The most significant concern is the inhalation of Radon from the air. Radon typically enters air via two common pathways:

- Migration (up from the soil) into the house air through cracks and/or other openings in the foundation.
- 2. Release of dissolved radon gas into the air from water usage in the home.

In New England's, the migration of radon up from the soil contributes the largest percent of radon found in the average home. Radon from a groundwater type water supply source, particularly a bedrock (artesian, drilled) well, contributes the next largest percentage of radon in the home. The US EPA has set an advisory "action level" of 4 pCi/L for radon gas in indoor air. While not a mandated health standard, this level is a guideline for people to use in assessing the seriousness of their exposure to airborne radon. Studies show that high levels of radon gas in the air increase the risk of developing lung cancer. At present there is no federal or state regulated standard for radon in drinking water. In 2016, the New Hampshire Department of Environmental Services (NHDES) and the Maine Radon Program recommended that private wells with radon concentrations at or above 10,000 pCi/L be treated to reduce radon levels. Treatment for water with concentrations between 2000 and 10,000 pCi/L (in NH), or 4000 and 10,000 (in ME), may be advisable if the air concentrations in the home exceed 4 pCi/L. The EPA has proposed a limit of 4000 pCi/L, but this has never been enacted. Massachusetts recommends 10,000 pCi/L and Vermont 4,000 pCi/L. A useful equation developed by the EPA to determine the seriousness of Radon in water is that 1 pCi/L of Radon will develop in air for every 10,000 pCi/L in water.

Fluoride (limit = 2.0/4.0 mg/l secondary/primary)

Fluoride occurs naturally in New England's bedrock. Fluoride has no taste, color or odor and **thus the only way** to determine its concentration is by laboratory analysis. The Centers for Disease Control (CDC) have recommended 1.0 to 1.2 milligrams per liter (mg/L) as the optimum beneficial concentration of fluoride in drinking water for dental protection in state of New England's. Below 0.5 mg/L there is little tooth decay protection. Above 1.5 mg/L, there is little additional benefit. In the range of 2.0-4.0 mg/L of fluoride, staining of tooth enamel is possible. At concentrations above 4.0 mg/L, studies have shown the possibility of skeletal fluorosis as well as the staining of teeth. In its most severe form, skeletal fluorosis is characterized by irregular bone deposits that may cause arthritis and crippling when occurring at joints.

MtBE / Volatile Organic Compounds (VOC's)

MtBE is the abbreviation for the compound "methyl tertiary butyl ether". This compound is a colorless liquid added to gasoline. Thus its presence in well water would indicate that gasoline contamination exists in the well. MtBE degrades very slowly, is highly soluble in water, and has very low taste and odor thresholds. The EPA has not set a formal health based drinking water standard for MtBE. However, the NH. Department of Health and Human Services has recently developed a health-based drinking water standard for MtBE of 13 micrograms per liter (ug/L). Studies with animals suggest drinking water with high levels of MtBE may cause stomach irritation, liver and kidney damage, and nervous system effects. An increased amount of liver and kidney cancer was found in rats and mice breathing high levels of MtBE. Because of the animal studies on MtBE, New England's considers MtBE a possible human carcinogen. MtBE is tested in a group of approx. 70 compounds associated with petroleum or organic chemical contamination called Volatile Organic Compounds (VOC's). Many of these compounds are also known carcinogens.

Sulfide (Rotten Egg Odor)

Sulfide can be formed naturally as a by-product of the decomposition of organic material possibly aided by the presence of non-hazardous sulfur reducing bacteria, or by chemical reactions of soil and bedrock minerals containing sulfur. At the concentrations typically found in drinking water, it is not hazardous to health. It is also important to note that the odor threshold for sulfide is considerably lower than the point at which our laboratory test detects it. So you may smell it before we can find it. **Conductivity:** A very basic test measuring the total dissolved mineral content of water. Includes all individual minerals separately listed on this page.

QUALIFIER DEFINITION

NELSON ANALYTICAL LAB

120 York Street, Kennebunk, ME 04043 www.nelsonanalytical.com

(207)467-3478 phone

Qualifier Definition

REPORT OF ANALYSIS

Laboratory ID: C21060430

NH ELAP Accreditation #NH2018 Maine State Certification # ME00015

Maine Radon Certification # ME17500

Sampling performed by the lab is according to the lab document "Water Sampling Instructions". EPA standards list pH & Chlorine as field parameters which should be tested immediately upon sample collection. Samples tested for pH after submission are beyond the hold time. Samples will be analyzed as quickly as laboratory operations allow. Metals samples preserved and analyzed on the same day do not meet the method criteria. #-Sample(s) received at laboratory do not meet method specified temperature criteria.

Solid samples are reported on a dry weight basis unless noted otherwise.

Subcontract Laboratories: SUB1: Nelson Analytical Manchester (NH1005) ME-NH01005 SUB 2: (NH 2136) (ME-CT00007),SUB3: (NH2001) (ME00019), SUB 4: NH2073 SUB5: (NH2530) (ME FL00117), SUB7: EAI Analytical (NH 1007),SUB 8: ME00002 SUB9: (NH2516) (MA00100)